
(AA:DHA) and arachidonic acid to EPA
(AA:EPA) ratios to substantially lower val-
ues and a more favorable balance. The
importance of providing DHA and EPA to
the cat is reviewed and the potential benefits
are discussed.

INTRODUCTION
Mammals have a dietary requirement for
both n-6 and n-3 polyunsaturated fatty acids
(PUFAs) due to an inability to synthesize
the n-6 PUFA linoleic acid (LA) and the n-3
PUFA � - l i n o l e n i c acid (ALA). In cats and
dogs these PUFAs are important for skin
and normal haircoat luster, especially LA,
which is a component of lipids needed for
normal water permeability and skin tex-
t u r e .1 , 2 In addition, they also serve as precur-
sors for the synthesis of longer-chain, more
unsaturated fatty acids (LCPUFAs) that may
start in the liver but end in organs with high
LCPUFA levels.3 , 4 In a process of desatura-
tion and elongation, LA (designated 18:2n-6
for its 18-carbon length and 2 double bonds
beginning at the 6th carbon) is converted to
the n-6 LCPUFA arachidonic acid (AA;
20:4n-6) and ALA to the n-3 LCPUFAs
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ABSTRACT
Cats lack an adequate liver capacity to syn-
thesize the longer-chain omega (n-6 and n-
3) polyunsaturated fatty acids (LCPUFAs)
that, upon release into the blood, are incor-
porated into membrane phospholipids in
many tissues and serve essential structural
and signaling functions. The necessity and
importance of a dietary source of the n-3
LCPUFA docosahexaenoic acid (DHA)
prompted an evaluation of the effects of
supplementation of a typical cat diet with a
DHA-enriched salmon oil on the n-3
LCPUFAs in plasma and the relative levels
of n-6 and n-3 LCPUFAs. Supplementation
resulted in rapid increases in both DHA and
eicosapentaenoic acid (EPA) in total plasma
fatty acids and in plasma phospholipids.
These changes produced shifts in the overall
n-6:n-3 ratio present in plasma fatty acids
while markedly shifting the relative levels
of arachidonic acid (AA) to DHA
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EPA (20:5n-3) and DHA (22:6n-3). DHA is
normally present at higher levels in the
brain and retina, where it is critical to nor-
mal function.5–7 AA is also present at rela-
tively high levels in the brain, but is also
present in many other organs and tissues. 

Synthesis of AA begins in the liver with
addition of a double bond to LA by a � - 6
desaturase, which can also desaturate ALA
in the first of several steps leading to syn-
thesis of DHA. Since dietary intake of LA
frequently far exceeds that of ALA, synthe-
sis of AA in many mammalian species is
adequate to meet the requirements of many
tissues. However, the cat is especially inef-
ficient in synthesis of AA and requires
dietary AA for support of reproduction and
optimal health.8 , 9 Feline desaturation of
ALA is even less efficient, even with sub-
stantial amounts of ALA added to the diet,4

in part due to competition by LA for the
desaturase. The � -6 desaturase acts a second
time, catalyzing addition of the sixth double
bond in synthesis of DHA, which is absent
in the cat liver.4 In the cat a key aspect of
the inefficient conversion of precursors to
AA, EPA, and DHA is the very low level of
the � -6 desaturase in the liver. Use of a very
sensitive technique that follows utilization
of deuterium-labeled LA and ALA allowed
the demonstration that a low level of � - 6
desaturase is present in the liver. LA was
converted as a low rate to 18:3n-6 and other
elongated metabolites, including AA up to
22:4n-6 (docosatetraenoic acid, DTA). ALA
was also metabolized at a low rate, but only
up to 22:5n-3 (docosapentaenoic acid, n-3
DPA), which appeared in the plasma.4 I n
contrast to the liver, the brain was shown to
accumulate the deuteurium-labeled, longer
chain, more unsaturated 22:5n-6 (n-6 DPA)
and 22:6n-3 (DHA), respectively.4 T h u s ,
while the liver produces at least some AA, it
produces a limited amount of longer-chain
transport forms that may be converted to n-
6 DPA or DHA in certain tissues, such as
the brain and retina, that appear to have suf-
ficient desaturase activity to meet the mini-
mal requirements for DHA.

Although AA is considered essential for
normal reproduction,9,10 less is known about
the essentiality of DHA. Studies with the cat
and other species suggest that the cat may
be in a state of DHA deficiency, especially
during early development. Upon developing
a state of DHA deficiency, rats exhibit
learning and memory deficits, which can be
reversed with supplementation with DHA.1 1

Infants that are breast-fed or have DHA
added to their formulas show improved
visual acuity and more rapid neurological
development than unsupplemented, non-
breast-fed controls.1 2 Even puppies exhibit
enhanced trainability when supplemented
with DHA.1 3 Maternal provision of DHA
and AA occurs during both gestation and
lactation, but the levels of DHA supplied
during rapid neuronal development may be
less than optimal depending on the maternal
diet. The levels of DHA observed in juve-
nile cat brains were substantially lower than
the level found in adult cats.1 4 , 1 5

In rats a state of DHA deficiency results
in replacement of DHA in brain phospho-
lipids with n-6 DPA, with the n-6
DPA:DHA ratio indicative of the degree of
d e f i c i e n c y .1 6 This substitution of n-6 DPA
for DHA, especially in phosphatidylserine,
is associated with behavioral deficits that
can be reversed with DHA
s u p p l e m e n t a t i o n ,1 6 – 1 9 indicating that n-6
DPA is unable to fulfill the roles that
depend upon the unique biochemical char-
acteristics of DHA.2 0 In the brains and retina
of juvenile cats maintained on an LA-rich,
ALA-poor diet the n-6 DPA level actually
exceeds DHA, with an n-6 DPA:DHA ratio
up to 3.4 compared with 0.32 when DHA is
s u p p l e m e n t e d .1 5 Even this low ratio (0.32) in
supplemented juvenile cats is higher than
the ratio observed in the brain of adult cats1 4

and the very low ratio of rats, which have a
higher liver capacity for synthesis of DHA
and normally very low levels of brain n-6
D P A .1 6 Therefore, the n-6 DPA:DHA ratio
may exhibit species differences, with cats
having a comparatively high value that is
clearly diet dependent. In the cat DHA may
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be conditionally essential, especially during
neuronal development when it is unlikely
that optimal levels are present in the
absence of supplementation. 

The importance of DHA and EPA to the
cat may extend to many other aspects of
normal physiology and pathophysiology
during all stages of the life cycle. Both n-6
and n-3 LCPUFAs are incorporated into
membrane phospholipids where they play
fundamental but different roles in regulating
membrane properties and signal transduc-
tion from membrane receptors. Upon release
from membranes by phospholipases, AA
and EPA may be converted to
prostaglandins, leukotrienes, or thrombox-
anes, with AA-derived eicosanoids having
more inflammatory activity than the EPA-
derived metabolites.3 DHA serves as a criti-
cal component of phospholipids involved in
membrane receptor signaling by receptors
different from those linked to AA release.
DHA increases membrane fluidity important
to many membrane functions, affects the
localization and activities of membrane-
associated receptors and enzymes, and may
also be released by specific phospholipas-
e s .7 , 2 0 As a free fatty acid DHA may be
metabolized to recently discovered
“docosanoids” or bind to cytoplasmic recep-
tors and regulate gene expression.2 1 - 2 4

In view of these various functional
activities of DHA and the fact that many
mammals consume diets that are n-6 rich
but n-3 poor, utilize ALA poorly even when
it is present in the diet, and usually have a
low dietary intake of n-3 LCPUFAs, it
should not be surprising that a growing list
of pathological conditions may benefit from
DHA supplementation. These range from
age-associated cognitive impairment2 5 - 2 8 t o
c a r d i o v a s c u l a r2 9 and renal conditions,3 0 s k i n
d i s o r d e r s ,3 1 skeletal abnormalities,3 2 and dia-
betes and obesity,3 3 with many of these con-
ditions having an inflammatory component.
Compared to dogs, rodents, and humans,
there are only a limited number of studies of
the effects of n-3 LCPUFA supplementation
in the cat, including skin conditions,3 4 , 3 5 t h e

immune system,3 6 platelet function3 7 a n d
insulin resistance in obese cats.3 3 A case-
control study showing a significantly higher
AA intake in cats with chronic renal failure
than controls3 8 suggests that feline renal fail-
ure may also benefit from n-3 LCPUFAs as
seen in dogs.3 0 Because of the potential ben-
efits of providing cats with a DHA-enriched
supplement, a study was conducted in cats
over a 4-week period on the effects of a
DHA-enriched salmon oil on the fatty acid
profiles of plasma total fatty acids as well as
plasma phospholipids. Plasma phospholipid
fatty acid levels reflect dietary LCPUFA
and liver fatty acid and phospholipid metab-
olism, while also serving as an index of the
potential for affecting phospholipids in vari-
ous organs. The AA:DHA and AA:EPA
ratios, which have come to be recognized as
more physiologically relevant than overall
n-6:n-3 ratios,3 9 , 4 0 were also determined as
indices of changes that more closely relate
to the effects of n-3 LCPUFAs.

MATERIALS AND METHODS
The protocol was reviewed and approved
prior to study initiation by an Institutional
Animal Care and Use Committee (IACUC)
and complied with the Animal Welfare Act.
Amendments were reviewed and approved
by the IACUC chairperson prior to their ini-
tiation. 

Cats were fed Purina Cat Chow
Complete Formula, which contains 31.5%
crude protein, 11% crude fat, a minimum of
1.25% LA and minimum 0.02% AA, plus
35 IU/kg vitamin E. Cats weighing between
2.4 and 7.1 kg (mean 4.9 kg) were orally
administered a daily dose of 1.5 mL of
DHA-enriched salmon oil (Welactin,
Nutramax Laboratories, Inc., Edgewood,
MD, USA) at feeding, resulting in 180 mg
DHA and 117 mg EPA/animal.

A complete blood count (CBC) and
serum chemistry panel were run at baseline
and day 28 (N = 16). Blood was collected
prior to daily supplement administration.
Blood samples were used for measurement
of fatty acid levels in plasma and plasma
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phospholipids for cats at days 0, 7, 21, and
28 of the study (N = 8). Blood used for fatty
acid analysis was collected in a lavender top
(EDTA) tube. All samples for fatty acid
analysis were sent via courier for overnight
delivery to Peroxisomal Diseases
Laboratory, Kennedy Krieger Institute,
Baltimore, MD, USA.

The plasma was separated from red
blood cells (RBCs) and the samples stored
at -80˚C until analysis. A 0.5-mL aliquot of
plasma or packed RBCs was Folch extract-
e d4 1 and the lipids redissolved in
hexane:benzene 6:4. The phospholipids
were isolated using a silicic acid column,
1.2 cm inside diameter by 3 cm height, by
the method of Vance and Sweely.4 2 A f t e r
addition of appropriate standards and
methanolysis, the total fatty acid or phos-
pholipid samples were analyzed using capil-
lary gas chromatography-electron capture
negative-ion mass spectrometry (GC/MS).
A 100-µL aliquot of plasma was taken for
direct measurement of the total lipid fatty
acids by GC/MS. The individual fatty acids
were calculated as percentage of total fatty
acids identified in each analysis.

Fatty acids were analyzed using a repeat-
ed measures analysis of variance (ANOVA)
to evaluate changes in fatty acids over time

at an alpha of 0.05. Hematology and serum
chemistry results were analyzed using an
ANOVA to evaluate any changes between
day 0 and day 28 at an alpha of 0.05.

RESULTS
Prior to supplementation the plasma PUFA
profile was predominated by the n-6
PUFAs, with a 16-fold excess over n-3
PUFAs in total fatty acids and a 7-fold
excess in phospholipids (Table 1). LA
accounted for most of the n-6 content, with
21% in phospholipids and 29% in total fatty
acids, while AA was present at 8%–9% in
both. This value for AA is higher than has
been reported in other studies,4 , 1 4 , 1 5 , 3 4 p e r h a p s
due to the AA included in the diet. In con-
trast, ALA was present at the lowest level of
any of the n-3 fatty acids, all of which were
present at less than 1% in the total fatty acid
pool. Higher levels were found in plasma
phospholipids, especially for EPA (2.8%),
which was 2-fold greater than DHA (1.4%)
and opposite to the pattern typically seen in
human and rodent plasma.1 6 , 2 6

Following supplementation for 28 days
with the DHA-enriched salmon oil both EPA
and DHA increased by 5.5-fold and 3.7-fold,
respectively, in total fatty acids while DPA
increased 2-fold (Table 1). In plasma phos-

Table 1. Effect of Supplementation with Docosahexaenoic Acid (DHA)/Eicosapentaenoic Acid
(EPA) on Cat Plasma Lipid Profiles

Plasma Plasma
Total Fatty Acids Phospholipids

(% total fatty acids) (% total fatty acids)

Day 0 Day 28 Day 0 Day 28

Fatty Acid

LA* 29.10 ± 0.47 25.20 ± 0.51† 21.36 ± 0.23 15.76 ± 0.46†

ALA 0.39 ± 0.02 0.32 ± 0.02† 0.20 ± 0.01 0.16 ± 0.01†

AA 8.34 ± 0.19 8.70 ± 0.14 9.15 ± 0.45 9.55 ± 0.44
EPA 0.86 ± 0.06 4.77 ± 0.31† 2.75 ± 0.19 4.71 ± 0.40†

DPA 0.37 ± 0.03 0.72 ± 0.05† 0.51 ± 0.05 1.04 ± 0.06†

DHA 0.90 ± 0.11 3.32 ± 0.31† 1.40 ± 0.20 4.73 ± 0.42†

Total n-6 39.49 ± 0.39 35.40 ± 0.39† 32.90 ± 0.58 27.13 ± 0.63†

Total n-3 2.54 ± 0.17 9.15 ± 0.39† 4.90 ± 0.37 10.66 ± 0.50†

n-6/n-3 15.96 ± 0.92 9.98 ± 0.67† 6.93 ± 0.40 2.59 ± 0.13
AA/DHA 10.04 ± 0.98 2.74 ± 0.19† 7.23 ± 0.77 2.10 ± 0.16†

AA/EPA 9.98 ± 0.67 1.88 ± 0.13† 3.41 ± 0.23 2.10 ± 0.14†

*LA indicates linoleic acid; ALA, � -linoleic acid; AA, arachidonic acid; DPA, docosapentaenoic acid.
†
Significantly different from basal value at day 0, P < 0.05.
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pholipids EPA increased 70% and DHA by
3.4-fold from their basal levels to the same
4.7%; DPA again increased 2-fold from its
low basal level to 1.0% of the fatty acids
present in plasma phospholipids. These
increases in total fatty acids and plasma
phospholipids occurred rapidly, with near
maximal values observed by the seventh day,
followed by a gradual rise to slightly higher
values through 28 days (Figures 1 and 2). As
these n-3 LCPUFAs were increasing, LA
decreased by 13%–18%, while no change
was observed in AA (Table 1). The net result
of these shifts was a reduction in the overall
n-6:n-3 ratio by 75% in the total fatty acid
pool and 64% in the phospholipid pool. The
key AA:DHA ratio decreased over 70% in
both pools, while the AA:EPA ratio
decreased by 79% in total fatty acids and
38% in phospholipids. 

Supplementation with salmon oil pro-
duced small, statistically significant changes
in 7 parameters of the CBC/serum chem-
istry (N = 16). On the CBC there was a
slight decrease in mean cell hemoglobin
concentration (MCHC) and a slight increase
in platelet count. On the serum chemistry,
decreases in urea nitrogen, calcium, sodium,
chloride, and urea nitrogen/creatinine ratio
were observed. None of these values were
clinically significant, as they remained with-
in the normal laboratory references ranges.

DISCUSSION
The present study shows that supplementa-
tion with a DHA-enriched salmon oil elicits
a rapid shift in the n-6:n-3 balance of
LCPUFAs in cat plasma, reflected in both
total fatty acids and phospholipids. This
shift in the n-6:n-3 ratio resulted from sub-
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Figure 1. Effect of docosahexaenoic acid (DHA)-enriched salmon oil supplementation on eicos-
apentaenoic acid (EPA) and DHA levels in plasma total fatty acids. Panel A: EPA; panel B, DHA.
Values are means ± standard error, N = 8.

Figure 2. Effect of docosahexaenoic acid (DHA)-enriched salmon oil supplementation on eicos-
apentaenoic acid (EPA) and DHA levels in plasma phospholipids. Panel A: EPA; panel B, DHA.
Values are means ± standard error, N = 8.
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stantial increases in both DHA and EPA,
especially in the plasma phospholipids.
While the overall n-6:n-3 ratio may reflect
the degree of LCPUFA balance, recent stud-
ies have emphasized the more physiologi-
cally meaningful AA:DHA and AA:EPA
r a t i o s .3 9 , 4 0 The shorter-chain precursors and
intermediates in synthesis may contribute
substantially to an overall n-6:n-3 ratio but
do not serve the unique roles fulfilled by
DHA, AA, and EPA. Both of these ratios
decreased substantially upon supplementa-
tion with a DHA-enriched salmon oil.

Supplementation studies of PUFAs or n-
3 LCPUFAs in cats have examined
antithrombotic effects,3 4 , 3 7 cellular responses
involved in immunity and inflammation,3 6

d e r m a t i t i s ,3 5 insulin sensitivity,3 3 and conver-
sion of LA and ALA to AA and DHA.4 , 1 5 , 3 3

Some of these studies do not adequately
describe the dietary intake of the n-3 fatty
acids to allow comparisons of blood levels
of n-3 LCPUFAs. In one carefully docu-
mented study, much higher doses of EPA
and DHA (1.1–1.7 g/d and 0.6–0.9 g/d,
respectively) than used in the current study
(0.12 g/d and 0.19 g/d, respectively) were
shown to elicit changes in plasma fatty
acids comparable to those observed here
without major effects on platelet aggrega-
tion or bleeding time.3 4 In another study
with an EPA-enriched fish oil added to
achieve a dietary content of 0.35% EPA and
0.15% DHA, no clinically significant effects
were observed on a large number of
immune parameters, while final plasma
EPA reached levels comparable to those
shown here.3 6 No clinically significant dif-
ferences in a large number of serum chem-
istry and blood cell parameters were
observed in the current study, further sup-
porting the safety of supplementation with a
DHA-enriched salmon oil. 

Much remains to be learned about the
actual benefits of providing cats with n-3
LCPUFAs via supplementation. Some
improvement in long-term glucose control,
with a decrease in plasma insulin concentra-
tion, was observed when cats fed ad libitum

became obese while consuming a diet
enriched in DHA and EPA.3 3 Effects on skin
conditions may occur but need further
study, with more clearly defined intakes
than was previously described.3 5 A much
larger number of canine studies on n-3
LCPUFAs have shown benefits involving
the cardiovascular system, renal function,
skin conditions, as well as neuronal devel-
opment. While it does not appear to be as
deficient in � -6 desaturase activity as the
cat, the dog’s limited ability to utilize ALA
to synthesize DHA and EPA accounts for
the various positive effects that have been
shown with supplementation of n-3
LCPUFAs. Consequently it is likely that the
cat may also respond in a similar manner.
Further studies are needed, particularly on
kittens and on aging cats, where the need
for DHA is likely to be the greatest.
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