Evaluation of Animal Origin Cell Cultures for In Vitro Cultivation of Noroviruses

Yashpal S. Malik, BVSc, PhD* Sunil Maherchandani, BVSc, PhD* Paul B. Allwood, MPH, PhD† Sagar M. Goyal, BVSc, PhD*

*Department of Veterinary Population Medicine College of Veterinary Medicine University of Minnesota St. Paul, MN

[†]Division of Environmental Health Minnesota Department of Health St. Paul. MN

KEY WORDS: animal, primary cell cultures, cell lines, in vitro cultivation, cytopathological effects, Noroviruses, RT-PCR

ABSTRACT

Noroviruses (NoVs) are a leading cause of acute non-bacterial gastroenteritis throughout the world. So far, in vitro growth of these viruses has not been achieved in human origin cell lines, and limited efforts have been made to evaluate the susceptibility of animal origin cell cultures. The main objective of this study was to evaluate primary and established cell cultures from a variety of animal species for in vitro growth of human NoV. A total of 19 cell cultures from 11 different animal species were evaluated. Cell monolayers were inoculated with 1 of the 2 fecal samples known to contain NoV. The infected cell monolayers were observed daily for up to 5 days for any cytopathological effects after which the infected cell suspension was inoculated in their respective fresh cells for a total of 5 blind passages. At fifth blind passage, reverse transcription polymerase chain reaction (RT-PCR) assay was used to detect the

presence of NoV RNA. None of the blind passages in any cell culture showed the evidence of any morphological change. When tested by RT-PCR, fifth cell culture passages from all cells were negative for NoV RNA. These results indicate that the 19 cell types used in this study are not susceptible to NoV and that the search should continue for a suitable cell culture system in which NoV can be isolated, propagated, and titrated.

INTRODUCTION

Noroviruses (NoVs) are a group of single-stranded, non-enveloped, RNA viruses belonging to the family Caliciviridae. L2 Recently, these viruses have emerged as important pathogens in institutional and group settings including hospitals, nursing homes, day care centers, schools, banquet halls, cruise ships, camps, and sports grounds. A relatively low-infectious dose, stability in the environment, and multiple modes of transmission make it difficult to control disease outbreaks caused by NoVs. Until recently, NoVs were believed to be highly species-specific for humans, but the protest from Japan and the Netherlands L2.13

have demonstrated the occurrence of NoV-like viruses in pigs, monkeys, and calves. Of the animal caliciviruses, bovine calicivirus is considered to be more closely related to human caliciviruses.¹⁴

Until now, NoVs have been reported to be non-cultivatable both in cell cultures and animal models except for limited success in some non-human primates. Most of the studies on NoVs are based on the use of human volunteers or surrogate models (e.g., feline calicivirus). 15-17 Recently, studies based on recombinant NoVs have highlighted their clinical and public health importance, ability to cause infection via a number of routes, and their considerable genetic diversity. 18

Despite repeated attempts, experimental infection of different animal species, including non-human primates, rodents, birds, pigs, calves, and dogs, with the NoVs has not been successful. 19-23 Limited attempts have been made to evaluate the use of animal origin cell cultures for the growth of NoVs. The study described here is based on the premise that sequential passaging of NoVs in primary or established cell lines of animal origin may lead to its growth in vitro. If successful, such cell cultures would facilitate descriptive studies on the pathogenesis of NoVs and would replace the use of animal models and human volunteers.

MATERIALS AND METHODS

Source of NoVs

Two electron microscopy- and enzymelinked immunoassay-confirmed Minnesota strains of NoVs obtained from an outbreak of gastroenteritis (kindly provided by the Minnesota Department of Health, St. Paul, MN) were used. Samples were in the form of human stools and were further confirmed to contain NoV genome by reverse transcription polymerase chain reaction (RT-PCR) in our laboratory.²⁴

Inoculum Preparation

A 10% suspension of the feces was made in phosphate buffered saline (pH 7.2), and the

suspension was filtered through 0.45 nm membrane filter (Millipore, Bedford, MA). The filtrate was used to inoculate cell cultures.

Cell Cultures

The primary and established cell cultures used in the study are shown in Table 1. Primary cell cultures were porcine alveolar macrophages, porcine kidney, bovine and llama skin fibroblasts, and bovine, avian, and mouse embryos. The established animal cell lines BHK-21, BGM, MA-104, Vero, BT, PK-15, ST, CRFK, Frhk, QT-35, RK-13, ED, and MDCK have been used successfully to cultivate various human and animal viruses25 and were evaluated in this study for the growth of NoV. Most of the cell cultures were grown in Eagle's minimal essential medium (Celox, St. Paul, MN) supplemented with 8% fetal bovine serum (FBS), penicillin (100 U/mL), streptomycin (1 mg/mL), and fungizone (100 µg/mL). The same medium was used for Frhk cells except that the concentration of FBS was 16%. Porcine alveolar macrophages were grown in RPMI 1640 medium supplemented with 8% FBS, penicillin (100 U/mL), streptomycin (1 mg/mL), and fungizone (100 µg/mL). The cells were grown in 24-well microtiter plates and each well was initially seeded with approximately 1×10^6 cells/mL in their respective growth media. The plates were incubated at 37°C in a 5% CO2 incubator for 24 hours and observed for the formation of monolayers after which they were used for sample inoculation.

Experimental Design

One-day-old cultures contained in 24-well plates were rinsed twice in Hanks balanced salt solution (HBSS). Both NoV strains were inoculated in duplicate wells at 0.2 mL/well. The virus was allowed to adsorb to the cells by agitating the plates on a shaker platform at 100 rpm at 37°C for 90 minutes. Two mock-inoculated wells for each cell culture were used as negative controls. The virus inoculum was decanted and cells rinsed twice with HBSS to remove un-adsorbed virus. The cells were then flooded with 1 mL

Table 1. Cell Cultures Used for the Propagation of NoVs.

Name	Abbreviation Used	Origin	Source or ATCC # (if available)
Primary cultures			
Bovine embryo	BE	Bovine	-
Bovine skin fibroblast cells	BSF	Bovine	-
Porcine primary kidney	PPK	Porcine	-
Porcine alveolar macrophages	PAM	Porcine	-
Chicken embryo fibroblast	CEF	Avian	-
Llama skin fibroblast cells	ILF	Llama	-
Mouse embryo	ME	Mouse	-
Continuous cell lines			
Baby hamster kidney	BHK-21	Hamster	CCL 10
Buffalo green monkey kidney*	BGM	Monkey	-
African green monkey kidney	MA-104	Monkey	CRL 2378
African green monkey kidney	Vero	Monkey	CCL 81
Bovine turbinate	BT	Bovine	CRL 1390
Porcine kidney	PK-15	Porcine	CCL 33
Swine testis	ST	Porcine	CRL 1746
Crandell's feline kidney†	CRFK	Feline	-
Feline kidney†	Frhk	Feline	-
Quail tumor*	QT-35	Avian	-
Rabbit kidney	RK-13	Rabbit	CCL 37
Equine dermal	ED	Equine	CCL 57
Madin Darby canine kidney	MDCK	Canine	CCL 34

^{*}Cells were obtained from National Veterinary Services Laboratories, Ames, Iowa.

of maintenance medium containing 1% FBS followed by incubation at 37°C. Inoculated cells were observed daily for up to 5 days for any cytopathological effects. After 5 days, cells from duplicate wells were pooled individually and frozen-thawed twice, and 0.2 mL of the lysate was used for the next blind passage in fresh cell culture. An aliquot of pooled cells from each passage was stored at -70°C for future use.

Nucleic Acid Extraction

Nucleic acid from fifth passage of all virus-inoculated cell cultures was extracted using QIAamp viral RNA mini kit (Qiagen, Valencia, CA) following manufacturer's instructions. In brief, 140 μ L of cell suspension was mixed with 560 μ L of AVL lysis buffer, vortexed briefly, and incubated for 15 minutes at room temperature followed by

the addition of 560 μ L of absolute ethanol and vortexing. This mixture was passed through QIAamp spin columns followed by 2 washings with 500 μ L of washing buffers (AWI-1 and AWI-2). RNA bound to spin column cartridge was eluted in 60 μ L of QIAamp AVE elution buffer. The nucleic acid was stored at -20° C until use.

RT-PCR

Molecular detection of NoVs was performed by RT-PCR using published primer pairs.²⁴ The primer pair sequences used in the study were JV 12 (5'-3' ATACCAC-TATGATGCAGATTA) and JV 13 (5'-3' CATCATCACCATAGAAAGAG). To avoid cross contamination, single tube RT-PCR method was adopted using Qiagen single tube RT-PCR kit. Amplification was carried out in a reaction volume of 50 μL

[†]Cells were provided by Douglas Weit, University of North Carolina, NC.

containing 10 µL of 5× RT buffer (12.5 mM MgCl₂), 2 µL of dNTP mixture (10 mM of each dNTP), 2 µL of enzyme mix and 2 µL of Q solution, 1 µl of each primer (50 pmol each), 10 µL of RNA, and 22 µL of nuclease-free water to make the volume of reaction mix 50 ul. Reverse transcription was carried out at 50°C for 1 hour followed by the inactivation of reverse transcriptase enzyme at 95°C for 15 minutes. Conditions for PCR used were: 40 cycles of 94°C for 1 minute (denaturation), 53°C for 1 minute (annealing), and 72°C for 2 minutes (extension) followed by a final extension at 72°C for 5 minutes after completion of 40 cycles of PCR amplification in Perkin Elmer, GeneAmp PCR system 9600. Electrophoretic separation of PCR products was performed for 1 hour at 101 V on 3% agarose gel in 1×-TAE buffer followed by staining with ethidium bromide. The amplicons were visualized under UV trans-illuminator. For estimating product length, 1 Kb DNA ladder (Invitrogen, Carlbad, CA) was used as a marker. To determine the specificity of virus specific primers, mock-inoculated cell culture extracts were also tested.

RESULTS

None of the inoculated cell cultures showed any cytopathological changes in any of the 5 passages. In addition, nucleic acid extracted from the fifth cell culture passage showed no amplification of the NoV genome. The primer pairs used in this study did amplify NoVs in the original fecal samples used to infect all cell cultures with an expected amplicon of 326 bp size. No amplification was observed in any of the mock infected control cell cultures.

DISCUSSION

Enteric caliciviruses have been reported in pigs, monkeys, calves, dogs, and chickens.^{26–28} However, attempts to experimentally infect non-human hosts with human NoVs have largely been unsuccessful except for some encouraging results in chimpanzees, macaque, and rhesus monkeys.^{19–23} So far, no

in vitro system for the growth of NoV has been described. Recently, various methods have been tried to grow NoVs in vitro based on the current understanding of the binding and replication sites of NoV in vivo. Many gastric, duodenal, and enterocyte cultures have been tried with or without the addition of supplements such as insulin, dimethylsulfoxide, and butyric acid to mimic the in vivo intestinal environment. However, none of the approaches has been successful so far.

Attachment of virions with their specific receptors on the host cells is a major determinant of the host range and tissue tropism of a virus. 30,31 It has recently been discovered that recombinant Norwalk virus-like particles (rNVLPs) agglutinate red blood cells. Since histo-blood group antigens are expressed on gut mucosa as well as red blood cells, the rNVLP hemagglutination system has been used as a model for studying NoV attachment to cells to identify a potential NoV receptor. 32,33

In the present study, 19 animal origin cell lines from 11 different species with an adsorption time of 90 minutes and constant shaking of the inoculum were used to achieve virus adsorption and growth. However, all efforts were unsuccessful. Other strategies such as altered adsorption time, longer incubation period, use of roller cultures, method of preparation of virus inoculum, condition for maintenance of cell monolayers, additives in maintenance medium, method of inoculation of cells, and trypsin treatment, etc., have also not been successful in the cultivation of NoV.29 We conclude that efforts should continue to find a suitable NoV cultivation system.

ACKNOWLEDGMENTS

We thank Lance Buoen, Wendy Wiese, and Devi P. Patnayak for technical assistance.

REFERENCES

 Green KY, Ando T, Balayan MS, et al. Taxonomy of caliciviruses. *J Infect Dis*. 2000;181:322–330.

- Prasad BV, Hardy ME, Estes MK. Structural studies of recombinant Norwalk capsid. *J Infect Dis*. 2000;181:317–321.
- Centers for Disease Control. Outbreaks of gastroenteritis with Noroviruses on cruise ships in the Unites States. *Morb Mortal Wkly Rep*. 2002;51:1112–1115.
- Centers for Disease Control. Norovirus activity
 –United States. Morb Mortal Wkly Rep.
 2003;52:41–45.
- Marks PJ, Vipond IB, Carlisle D, Deakin, D, Fey RE, Caul EO. Evidence for airborne transmission of Norwalk-like viruses in a hotel restaurant. *Epidemiol Infect*. 2000;124:481–487.
- Deneen VC, Hunt JM, Paule CR, et al. The impact of foodborne calicivirus disease: the Minnesota experience. *J Infect Dis*. 2000;181: S281–S283.
- 7. Lo SV, Conolly AM, Palmer SR, et al. The role of pre-symptomatic food handlers is a common source of outbreaks of food borne SRSV gastroenteritis in a group of hospitals. *Epidemiol Infect*. 1994;113:513–521.
- Patterson T, Hucking P, Palmer S. Outbreaks of SRSV gastroenteritis at an international conference traced to food handled by a post symptomatic caterer. *Epidemiol Infect*. 1993;111:151–162.
- Fankhauser RI, Noel JS, Monroe SS, et al. Molecular epidemiology of Norwalk-like viruses in outbreaks of gastroenteritis in the United States. *J Infect Dis*. 1998;178:1571–1578.
- Clarke IN, Lambden PR. The molecular biology of caliciviruses. J Gen Virol. 1997;78:291–301.
- Sugieda M, Nagaoka H, Kakishima Y, Ohshita T, Nakamura S, Nakajima S. Detection of Norwalk-like virus genes in the caecum contents of pigs. Arch Virol. 1998;143:1215–1221.
- van der Poel WHM, van der Heide R, Verschoo F, Gelderblom H, Vinje J, Koopmans MPG. Epidemiology of Norwalk-like viruses infection in cattle in the Netherlands. *Vet Microbiol*. 2003;92:297–309.
- van der Poel WHM, Vinje J, van der Heide R, Herrera MI, Vivo A, Koopmans MPG. Norwalklike calicivirus genes in farm animals. *Emerg Infect Dis.* 2000;6:36–41.
- Dastjerdi AM, Green J, Gallimore CI, Brown DWG, Bridge J. The bovine Newbury agent-2 is genetically more closely related to humans SRSVs than to animal caliciviruses. *Virology*. 1999;254:1–5.
- Bidawid S, Malik N, Adgburin O, Sattar SA, Farber JM. A feline kidney cell line-based plaque assay for feline calicivirus, a surrogate for Norwalk virus. J Virol Methods. 2003;107:163–167.
- Slomka MJ, Appleton H. Feline calicivirus as a model system for heat inactivation studies of small round structured viruses in shellfish. *Epidemiol Infect*. 1998;121:401–407.

- Gulati BR, Allwood PB, Hedberg CW, Goyal SM. Efficacy of commonly used disinfectants for the inactivation of calicivirus on fresh fruits, vegetables and food-contact surfaces. *J Food Prot*. 2001;64:1430–1434.
- White LJ, Bali JM, Hardy ME, Tanaka TN, Kitamoto N, Estes MK. Attachment and entry of recombinant Norwalk virus capsid to cultured human and animal cell lines. *J Virol*. 1996;70:6589–6597.
- Green KY. The role of human calicivirus in epidemic gastroenteritis. *Arch Virol*. 1997;13:153–165.
- Subekti DS, Tjaniadi P, Lesmana M, et al. Experimental infection of *Macacca nemestrina* with Toronto Norwalk like virus of epidemic viral gastroenteritis. *J Med Virol*. 2002;66:400–406.
- Cubitt WD. Human caliciviruses: characterization and epidemiology. Unpublished doctoral thesis, London University. 1985.
- Kapikian AZ, Estes MK, Chanock RM. Norwalk group of viruses. In: *Field's Virology*. Raven Press: New York, NY; 1999:783–810.
- Wyatt RG, Greenberg HB, Dalgard DW, et al. Experimental infection of chimpanzees with the Norwalk agent of epidemic viral gastroenteritis. *J Med Virol*. 1978;2:89–96.
- Vinje J, Koopmans MPG. Molecular detection and epidemiology of small round structured viruses in outbreaks of gastroenteritis in the Netherlands. *J Infect Dis.* 1996;174:610–615.
- Parwani AV, Flynn WT, Gadfield KL, Saif LJ. Serial propagation of porcine enteric caliciviruses in continuous cell lines: effect of medium supplements with intestinal contents or enzymes. *Arch Virol.* 1991;120:115–122.
- Granzow H, Schrmeirer H. Identification of 32 nm virus in feces of diarrheic calves by electron microscopy. *Monatsh Veterinarmed*. 1985; 40:228–229.
- Mochizuki M, Kawanishi A, Sakamoto S, Tashiro S, Fujimo R, Ohwaki M. A calicivirus isolated from a dog with fatal diarrhea. *Vet Rec*. 1993;132:221–222.
- Reckling KF. Use of electron microscopy for observation of small round structured viruses in fecal samples collected from calves and animals with diarrhea. Monatsh Veterinarmed. 1987;42:272–275.
- Duizer E, Schwab KJ, Neill FH, et al. Laboratory efforts to cultivate Noroviruses. *J Gen Virol*. 2004;85:79–87.
- Collins AR. HLA class 1 antigen serves as a receptor for human coronavirus OC43. *Immunol Invest*. 1993;22:95–103.
- Lamarre D, Ashkenazi A, Fleury S, Smith DH, Sekaly RP, Capon DJ. The MHC binding and gp 120 binding functions of CD4 are separable. Science. 1989;245:743–746.

- Hutson AM, Atmar RL, Mascus DM, Estes MK. Norwalk virus like particle haemagglutination by binding to histo-blood group antigens. *J Virol*. 2003;77:405–415.
- Hutson AM, Atmar RL, Graham DY, Estes MK. Norwalk virus infection and disease is associated with ABO histo blood group type. *J Infect Dis*. 2002;185:1335–1337.